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Abstract
Radiological measurements are reported in free text reports, and it is challenging to extract such measures for treatment planning such
as lesion summarization and cancer response assessment. The purpose of this work is to develop and evaluate a natural language
processing (NLP) pipeline that can extract measurements and their core descriptors, such as temporality, anatomical entity, imaging
observation, RadLex descriptors, series number, image number, and segment from a wide variety of radiology reports (MR, CT, and
mammogram). We created a hybrid NLP pipeline that integrates rule-based feature extraction modules and conditional random field
(CRF) model for extraction of the measurements from the radiology reports and links them with clinically relevant features such as
anatomical entities or imaging observations. The pipeline was trained on 1117 CT/MR reports, and performance of the system was
evaluated on an independent set of 100 expert-annotated CT/MR reports and also tested on 25 mammography reports. The system
detected 813 out of 806 measurements in the CT/MR reports; 784 were true positives, 29 were false positives, and 0 were false
negatives. Similarly, from the mammography reports, 96% of the measurements with their modifiers were extracted correctly. Our
approach could enable the development of computerized applications that can utilize summarized lesionmeasurements from radiology
report of varying modalities and improve practice by tracking the same lesions along multiple radiologic encounters.
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Background

Radiology reports include a great variety of information about
normal and abnormal structures in a free text format. Particularly

for cancer patients, radiology reports describe measurements of
cancer lesions and interval changes in their size are crucial indi-
cators of response or resistance of cancer therapies.
Measurements of lesion size (as well as organ size) are the pre-
dominant type of quantitative data recorded within the radiology
reports. However, unlike other numerical, phenotypic evidence,
such as lab values in ED notes, measurements are recorded as
free text, which hampers extraction and utilization of such data
by computer applications. Consequently, radiologists and clini-
cians need to ferret out lesion measurements from the radiology
report for assessing changes in the tumor burden. Radiology
reports typically capture lesion measurements, the anatomical
locations, and spatial location—image and series number from
where the measurements were taken. However, still, there are no
widely adapted structured reporting standards for measurements
in terms of its dimensions or descriptor terminology. In addition
to measurement reporting, usage of different templates in general
radiology reporting obstructs the automatic information extrac-
tion tasks.

Recent advancement in natural language processing (NLP)
techniques could provide a fully automated solution for
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processing free text radiology reports to extract task-specific in-
formation, including measurements [1]. Yet, NLP techniques
have been applied on radiological content either in the form of
general-purpose systems or as targeted systems addressing one
particular task [2–16]. Lesion measurement extraction and clas-
sification has been investigated in only a few studies [8, 13, 14,
17]. Sevenster et al. reported average F-measure 0.942 [12, 13]
for classifying measurement descriptors; however, they did not
link findings or anatomical locations to radiological measures.
Similarly, Yim et al. extracted measurements from free text radi-
ology reports as tumor characteristics but only focused on hepa-
tocellular carcinoma patients [17].

Despite the increased use of the NLP approaches, radiology
reports still introduce unique challenges for NLP, especially for
granular tasks, such as determining anatomic relationships and
temporal changes [18]. In addition to accurately extracting
measurements, an NLP approach that can extract anatomic
and spatial location of lesions and temporality of lesion mea-
surements is also needed, which to our knowledge has not yet
been undertaken. Moreover, no studies exist in literature which
extract measurements as target concepts and links them with
their descriptors of anatomical entities and imaging Bslice
(image) number^ and Bseries number.^ Recently, there are
promising studies with advanced NLP methodologies in order
to summarize radiology findings and generate BImpression^
but so far measurements have not been extracted [19].

Therefore, the purpose of this work is to develop and evaluate
an NLP engine that can extract measurements from narrative
radiology reports with their core descriptors—Btemporality,^
Banatomical location and segment,^ Bimaging observation,^
Bscan-specific information^—Bimage number,^ and Bseries
number.^

Methods

Dataset Under an Institutional Review Board (IRB)–approved
protocol, we used a dataset of 980 CTand 237 MR reports from
our institution for training and testing purposes. In terms of ana-
tomic locations, our dataset consists of 782 chest/abdomen/

pelvis, 52 head/neck, 157 lung/thorax, 44 pancreas, and 182
other types of reports. We randomly selected 100 radiology (26
MRI and 74 CT) reports from our data set to create our evalua-
tion (test) set, and we used the remaining reports as our training
set (1100) to train our conditional random field (CRF) model. In
addition, we used a set of 25 mammography reports from our
institution in order to evaluate the generalizability of our pipeline
to other types of radiology reports.

Proposed Pipeline In order to extract measurements from ra-
diology reports with their descriptors, we created a rule-based
NLP pipeline (Fig. 1) that includes automated named entity
tagging using a CRF model. We also analyzed the label tran-
sition scores identified by the CRF model to explore relation-
ships between descriptors. To compare the benefit of our ap-
proach over a commonly used approach, we created a baseline
dictionary-based method that only uses terms in a dictionary
as a knowledge source.

1. Pre-processing
The reports were subjected to a boundary detection

algorithm that recognizes sections and sentences in
narrative radiology reports. The text was split into sec-
tions using regular expressions matched against a list
of known section headers (commonly used in radiolo-
gy) and segmented with respect to five sections of the
report: BComparison,^ BTechnique,^ BClinical
History,^ BFindings,^ and BConclusions.^ Since lesion
measurements are recorded in the Findings section, it
was used in our pipeline as an input to extract descrip-
tors of interest. All sections were decoded to ‘utf-8’
and were split into sentences using the Natural
Language Toolkit (NLTK) [20] library in Python. In
addition, all text was lowercased and punctuations
were removed after measurements were tagged.

2. Measurement tagging
In this phase, we aimed to tag measurements and their

temporality which identifies whether a measurement is seen
on the current scan or listed as a reference to a prior mea-
surement. Measurements were tagged using several regular
expression patterns and pre-defined rules. For measurement

Fig. 1 The proposed pipeline
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and temporality tagging, regex patterns defined by Sevenster
et al. [14] were used with some modifications (Appendix 1).
After measurement tagging, we only included the sentences
that include measurements as the input for the following
steps of the pipeline. Similarly, a complete textual descrip-
tion of all dimensions of a measurement in a sentence was
targeted. In order to detect different measurements in the
same sentence and tag temporality correctly as current or
prior, we divided a sentence into sub-parts using the ap-
proach given as a pseudocode at Appendix 2. Basically,
the sub-parts were created based on the number of measure-
ments and their temporality. For example, the measurement
sentence in Fig. 2 was divided into 2 parts as (1) current
measurement part and (2) historical measurement part
(Fig. 2). Similarly, other descriptors (image number series
and series number on which the measurement is made,
segment of the organ which measurements is made on)
were extracted using several regular expression patterns
and pre-defined rules. Regular expressions for image, se-
ries, and segment tagging were defined (Appendix 3).

3. Named entity (lesions and modifiers) tagging
We used a CRF method to adopt a more generalizable

approach for named entity tagging since dictionary lookup
might not able to capture all the lexical and linguistic
variants of a medical term and radiology reports contain
different writing styles depending upon the preference of
radiologists and institutions. CRF is a probabilistic graph-
ical model to discover patterns, given the context of a
neighborhood, thus capture many correlated features of
the inputs. CRF also helps to investigate the sequential
relationships among the descriptors. The CRF model
was trained to achieve automatic named entity tagging
for anatomical entity, imaging observations, and RadLex
descriptors (as RadLex sub-classes associated with the
measurement).We also analyzed the label transition scores
identified by the CRFmodel in order to explore and visu-
alize relationships between descriptors. Label transition
scores are the conditional probabilities of possible next
states given the current state and the observation sequence
[21]. As input feature to CRF, we used part of speech
tagging and dictionary maps. We did not use any higher-
level syntactic features like NP chunks, and we used the

Python sklearn-crfsuite library (http://www.chokkan.org/
software/crfsuite/) with its default model parameters.

4. Rule-based measurement descriptor extraction
We mainly focused on 7 descriptors that characterize a

measurement in radiology: (1) temporality, (2) anatomical
entity, (3) imaging observation, (4) RadLex descriptor, (5)
image number and (6) series number on which the measure-
ment is reported, and (7) segment number of an organ.
Output was recorded as frames, in which the measurement
is the target entity and all other entities in the report are
assumed to be related to the target entry as its descriptors.
Thus, a secondary entity’s label encodes the type of the entity
plus the type of relation with the target entity. Eachmeasure-
ment was represented as a single frame object containing the
numeric measure of the lesion size and its descriptors as
output from our pipeline (Fig. 3).

Manual Annotation of the Reports

In order to evaluate the accuracy of the measurement extrac-
tion pipeline, we created a development (17 reports) and an
evaluation set of randomly selected 100 radiology reports (26
MRI and 74 CT) and had them manually annotated by a do-
main expert. Reports were annotated to indicate measure-
ments and their measurement descriptors (temporality, the im-
age and series number, segment, anatomical entity, and imag-
ing observation). Similarly, 25 mammography reports were
also manually annotated by an expert.

In order to annotate the larger training set of 1100 reports
for the CRF model, given its size, we used the Blight annota-
tion [22]^ strategy in which we first generated the annotations
for entities and relationships automatically via dictionary
lookup and sentence boundaries; then, those annotations were
manually corrected by experts to create the final set. This
training set, being potentially lower quality than our evalua-
tion set of annotations, were only used to train the CRF model
and in creating rules of our pipeline.

Statistical Evaluation

Using our evaluation set, we calculated precision, recall, and F
scores for measurement extraction at the sentence level. The

Fig. 2 Example sentence to sub-sentence division to capture current and prior measures of the nodule
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performance of extraction at report level was assessed as Bno
match,^ Bpartial match,^ and Bfull match.^ If a measurement
was extracted correctly with all of its descriptors, it was a Bfull
match^, while, if even one descriptor was missed by the sys-
tem, it was considered a Bpartial match^. BNo match^ oc-
curred when the system failed to recognize any of the descrip-
tors in addition to the measurement itself.

Results

We compared the accuracy of our baseline and proposed pipeline
with our manually annotated test set. The results of the proposed
pipeline in terms of precision and recall are shown in Table 1.

The gold standard set of 100 reports contained a total of
806 reported measurements. Our system extracted 784 (97%)
of them, and there were 29 (4%) false positives with no false
negatives. Among 806 measurements, 258 of them were

historical which referred to an earlier measurement and our
system detected 206 (79.84%) of them correctly as prior
measurements.

For the goal of perfect-matched information frame extraction,
we investigated the match percentages on the combination of
descriptors. Figure 4 shows the final results for full and partial
match cases with their frequencies and percentages based on the
different descriptors of the measurements. The number of fully
matched measurements was 465 (47.28%). Regarding partial
matches, for example, 672 (83%) of the measurements were
partial matches and they were matched at least with their ana-
tomical entities correctly. It can be clearly seen in Fig. 4 that,
when the number of descriptors related to a measurement in-
creases, the number of full matches decreases.

In order to explore and visualize relationships between de-
scriptors using CRF-generated probability scores, all possible
label transition scores among descriptors were illustrated in
Fig. 5. We observed that a measurement is most likely to be
followed by an imaging observation or anatomical entity but
when it comes to segment and image number, it is difficult to
detect the order of sequencing.

Evaluation on Mammography Reports

Among 25 mammography reports included in our second eval-
uations set, 14 (56%) of them includedmultiplemeasurements in
the same report. Among a total of 305 sentences in the dataset, 51
(17%) of those sentences included measurements and it corre-
sponds to 51 unique measurements since none of the sentences
had more than one measurement. Our measurement extraction
pipeline extracted 49 (96%) of those measurements with their
modifiers correctly (full match). The two cases that were extract-
ed as false positive had an uncommon pattern as Bincreased in

Fig. 3 Example of the NLP system input and output where each measurement forms a frame object that summarizes all core properties

Table 1 Evaluation of the NLP extraction pipelines from measure and
its seven targeted descriptors

Information type Baseline pipeline The proposed pipeline

Precision Recall F
score

Precision Recall F
score

Measurement 96.43 100 98.18 96.43 100 98.18
Temporality

(historical or not)
68.88 100 81.57 91.55 79.84 85.30

Anatomical entity 59.58 98.39 74.22 80.87 87.81 84.20
RadLex descriptor 57.02 99.75 72.56 67.35 83.19 74.44
Imaging observation 61.54 100 76.19 89.72 86.64 88.16
Segment 63.64 97.22 76.92 81.82 94.74 87.80
Image number 60.08 78.01 67.88 87.98 73.53 80.11
Series 63.71 78.67 70.41 89.77 72.34 80.12
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size (by 1 mm),^ and our system extracted the measurement as
B1 mm^.

Discussion

In this paper, we describe an NLP system to extract measure-
ments with their descriptors in a structured format from radiology
reports. All of this information is necessary to track a lesion in a
report over time, since the measurement itself is ambiguous, but
the measurement in addition to its descriptors makes it sufficient-
ly unique that it can be distinguished from other measurements in
the report, enabling tracking of lesions. The recall and precision
of our system for measurement extraction were 100% and
96.43%, respectively, which are reasonably good results for
MR and CT reports. Among 784 (97%) correctly extracted mea-
surements, only 465 (58%)measurements were extracted as fully
matched with all of their related descriptors due to very diverse
and unstructured referencing in text. On the other hand, in order
to identify a measurement for any follow-up encounter, it is
necessary to be able to distinguish them based on their all de-
scriptors. As opposed to previous studies, in which measure-
ments were defined as quantitative descriptions of other entities
[23], in this study, we treated measurements as core concepts and
defined other related entities as their descriptors. Errors we ob-
served during the evaluation phase were primarily due to ex-
pressing several measurements in the same sentence with their
previous measurements and insufficient descriptions of features
for each measurement as in the example below.

Example Sentence

B…reduced size of scattered enhancing nodules on series 11, for
example 4mm left frontal nodule (image 127, previously 7mm),

4 mm right frontal nodule (image 124, previously 9 mm), 3 mm
right frontal nodule (image 114; previously 7 mm), 2 mm lateral
right frontal nodule (image 118, previously 5 mm), 2 mm left
cerebellar nodule (image 53, previously 6 mm)….^

In this sentence, there are 10 different measurements (5
current and 5 prior) and their descriptors (imaging observa-
tions, RadLex descriptors, and image numbers). Our
system finds each measurement correctly with its tem-
porality, image/series numbers, and laterality. On the other
hand, it only detected the Bscattered|Radlex_Descriptor^ and
Benchancing|Imaging_Observation^ for the first measurement
since it is the closest and thesemodifiers are not reported in the
other sub-sentences. Therefore, we calculated 9 of 10 cases as
Bpartial match^ and it decreased our system’s performance.
These kinds of problems are due to a lack of description of
each measurement separately, which might be solved by spe-
cific rules but it can also increase false positive cases.

One important goal of any information extraction task is to
reveal the relations between concepts. However, relationship
extraction is a granular task which includes several modifiers
related to target measurement and requires detailed relation-
ship labels generated for training a machine learning pipeline
or purpose of rule development. Moreover, as a unique chal-
lenge of radiology report parsing, relationships between mea-
surement and their characteristics are not obviously definable
via adverbs, and relational and qualitative adjectives for all of
the entities in our corpus except BMeasure_of^ anatomical
entity. Therefore, we tried to learn entity sequencing using
CRF models in order to provide some insights for associating
modifiers with measurements via rules rather than directly
using it as a relationship extraction model.

CRF is the most popular supervised machine learning al-
gorithm for named entity tagging tasks. Being a statistical
machine learning method, CRF analyzes the data to infer rules

Fig. 4 Results of the of the proposed pipeline in terms of partial and full matches. AE, anatomical entity; IO, imaging observation; RD, RadLex
descriptors; Image, image number
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and patterns and uses sequence labeling tomodel relationships
between neighbors [24, 25]. In this study, we trained a CRF
model to label the named entities of interest automatically. We
also aimed to mine relationships between measurement and
their descriptors using the calculated transition probabilities of
this model such as the following: a measurement is most likely
to be followed by an imaging observation or anatomical entity,
but we observed that it is difficult to decide about the order of
sequencing for a given dataset with small training data set.
Therefore, we only used the CRF model’s output for named
entity tagging phase.

For the generalizability evaluation, we tested our system on
25 mammography reports and 96% of measurements were ex-
tracted correctly with their modifiers. Although the performance
was very high, it should be noted that, in those reports, a single
sentence does not include more than one measurement and our
system performs best for sentences having only one measure-
ment. On the other hand, this pattern would be common in
mammography reports. As a future work, we are planning to
evaluate the success of the pipeline on other modality reports.

Themain limitation of this study was the small dataset from
one single institution; in our future experiments, we plan to
increase the training and test size with reports from multiple
different institutions, hence, increasing the generalizability of
our system. Similarly, due to limited resource, we performed a
Blight annotation [22]^ of the training set of (1100 reports) for
CRF model by a single expert. On the other hand, the anno-
tation of the test set was a completely manual effort which we
think is a valuable resource that we will use in future work for
developing appropriate lesion tracking models. In the future,

we also intend to adopt attention-based convolutional neural
network model for extracting relations between the entities. It
should be noted that all these methodologies require larger
training sets and manual annotation of the training data is a
very labor-intensive task.

Extracting measurements and their descriptors as a struc-
tured summary of the lesions from unstructured radiology
reports might be quite valuable for lesion tracking purposes.
That information might be used to disambiguate the lesions
across studies to identify the baseline and follow-up measure-
ments of the same lesion. For example, if a lesion in the fifth
segment of the liver is identified in the baseline study and
then, it is identified again in the follow-up study, the anatom-
ical entity and the segment number can be used to associate
the measurements as the measurement of the same lesion.
Moreover, the historical references can be used to bind a mea-
surement to the measurement of the same lesion in a prior
study. This can help in generating automatic lesion tracking
and tumor burden reports. In addition, another impact of au-
tomated text annotation, such as in our work, is large-scale
data labeling to train models that automate image
interpretation.

Conclusion

Notwithstanding the foregoing limitations and challenges, we
believe there is potential for clinical utility of our approach to
improve radiologist practice by enabling automatic measurement
extraction and summarization from radiology reports. With

Fig. 5 Label transition scores calculated by CRF
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further testing, the system may ultimately help to improve radi-
ology practice by enabling automated lesion summary, facilitate
the assessment of changes in tumor burden, and improve the
quality of patient care.

Measurement and temporality extraction

Measurement and auxiliary regular expressions are used same
as they are defined by Sevenster et al. [14]. m specifies the
measurement regular expression to match; using other regular

expressions listed under Measurement. x specifies the numer-
ical part of the measurement whereas cm specifies the unit.
Auxiliary regular expressions are helper regular expressions
that are used in prior regular expressions to match temporality.

Sevenster et al. [14] defined regular expressions for both cur-
rent and prior. However, in this study, we used only prior regular
expressions and tagged every measurement that is not matched
by prior regular expressions as current. p5 was removed from the
regular expressions for temporality (prior) regular expressions,
and five new ones were defined (p0, p12, p13, p14, p15).

Pseudocode

The pseudocode listed below specifies three significant
functionalities of the pipeline. The main flow of the tagging
process is listed in tag_reports. Two methods that are used

during tagging processes split_according_to_temporality
and split_for_measurement are also listed to clarify the al-
gorithm behind splitting which plays a significant role in
extracting the relationships between modifiers and
measurements.
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Series number, image number, and segment
extraction

Series number, image number, and segment are extracted
using the regular expressions below. Segment regular expres-
sion is defined to also handle roman numerals.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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